
Re x = (Ux)/p; Pr, Prandtl  c r i te r ion;  x, y, axial and normal  coordinates ;  r ,  heat of vapor formation;  Cp, 
specif ic  heat; ~, s t r e a m  function. Indices:  R, axis;  e, evapora tor ;  0, evaporat ion surface;  t ,  heat conduc- 
t ion. 
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ACTIVATION OF VAPORIZATION CENTERS. I* 

V. S. Novikov UDC 536.243 

The influence of dissolved gases on the formation of a vapor-bubble nucleus of critical dimen- 
sions is considered. A mathematical model is proposed for the subsequent evolution of the nu- 
cleus; it gives a correct description of the growth of the vapor bubble uptothe instant at which 
it is detached from the wall. 

Even after allowing for the temperature dependence of the surface tension g and molecular heat of vapor- 
ization h, the theory of heterophase fluctuations [i] leads [2] to values of the degree of superheating required 
to vaporize liquids roughly twice as great as those measured experimentally. Harvey [3] noted that micro- 
scopic gas nuclei might survive in the indentations of rough, unwetted solid surfaces, causing liquids to boil 
at very slight superheatings. The idea of micronuclei constitutes the basis for the theory of the deactivation 
of indentations proposed by Holz and Singer and set out in [4]. It follows from [5, 6] that stable gas micro- 
nuclei are absent inthecase of organic liquids. For these, as well as for liquid metals which wet adjacent 
solid surfaces almost completely [4], the deactivation theory cannot explain the fact of early boiling. A new 
physical model was proposed in [2, 7] for the initial stage of phase transformations in liquids; this model may 
help in explaining the boiling of organic liquids and molten metals. According to [2, 7], complexes of several 
vapor molecules formed as a result of the superheating of the boundary layer of liquid are adsorbed in inden- 
tations on the surface, forming nuclei of greater than critical size. This paper is a continuation of [2, 7] and 
considers the influence of dissolved gases on the boiling of liquids, as well as formulating a mathematical 
model for the further evolution of the nucleus. 

One of the reasons for the formation of gas micronuclei on a solid surface is the adsorption of gas dis- 
solved in the liquid on surface indentations. Let us consider an indentation of conical shape with a depth z 0 
and a base radius r 0. The number N a of gas molecules adsorbed in the indentation is determined by the ad- 
sorption isotherm derived in [7, 8], which has the following form for a conical indentation: 

P 

Na = - -  (I) 
1 P - -  P P ~ 

- - ~ o ) {  1 - -  + 7 g P [ l - - ( ~ o )  ] e x p ( - ~ - - ) } P 0  
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Here (l/g) = uns(2~mokT)l/2; fl = zo/d2; P and T are  the p re s su re  and tempera tu re  of the liquid; n s is the 
number of adsorpt ion centers  on unit a rea  of the surface  of the indentation; k is Bol tzmann 's  constant; 
v exp [--(J,/kT)] is the desorpt ion velocity constant [9]; d 2 is the average distance between adsorbed mole-  
cules of mass too; Po is the saturated vapor p r e s su re  of the liquid at t empera tu re  T; �9 = --~ (r o, z o, 
d~d=l/ z - The potential energy ~ ( r  o, z o, d) of a molecule adsorbed at a distance d f rom the tip of the cone 
may be2f~und by making use of the Mie d i spers ion- in te rac t ion  potential U(h) = Ah -n '  --  ]3h - m '  (n' = 9, m' = 
6, h 2 = r 2 + z 2) on the  basis  of Eqs. (1) and (2) of [7]. After these calculations we obtain 

�9 (r0, Zo, a) = - 1Z - ~  1 + fb2 ~ - ~  r0 j 

where n o is the number of molecules in unit volume of the mater ia l  of the solid wall; b = r~/(r~ + z~); w = 
fb + a r c t a n f ;  f = z0/r 0. The coefficient 7 f rom (1) is the probability that gas molecules will collide with 
the surface  of the indentation; it may be found f rom the kinetic in terpreta t ion of the Henry law: 

/ 8 s--I  

. ( m'n'kTem~ ' / 2 / ' ~ - ' - )  exp - - - ~ - -  =-NsF(T), .(3) 
Pg = N, k 3 ~  ( s - -  1)! 

where N s is the molecular  concentra t ion of the dissolved gas;  ~ is the reduced mass of the l i q u i d -  gas 
sys tem;  ~ is the energy required  to bring a gas molecule out of solution; 2s is the number of quadratic 
t e r m s  in the sum used to represen t  the energy of the molecules;  m'  and n' a re  the power indices of the 
Mie potential.  Allowing for (3) ~/ = [Pg/NF(T)] (N is the total number of molecules per unit volume of the 

solution). 

In an unwetted indentation on a rough surface ,  the p re s su re  Pb0 of the adsorbed gas (or gas - - vapo r  
mixture) is smal le r  than the p re s su re  of the liquid by an amount depending on ~, the radius of the menis -  
cus r l ,  the wetting angle | and the aper ture  angle of the indentation 2ai (see [4]), i. e., Pb0 -- P - 
[2~lcos (| -- ~ i ) I / r l ] .  The height zi (reckoned f rom the ver tex  of the conical depression) to which the de-  

p ress ion  is filled with gas may be found f rom the re la t ion  (i/3)~(r0/z0) 2 z~ = (Na/L 0) (P1V1T/I~0Ti), where 
L 0 = 2.7 "1019 is the number of molecules occurr ing  under normal  conditions (P1, T1) in a volume of gas 
Vi = 1 cm 3 (Loschmidt number).  

�9 corresponding to On heating the boundary layer  of liquid f rom T o to the sa turat ion t empera tu re  T s 
the p re s su re  P, the adsorbing capacity of the indentation, i . e . ,  Na, diminishes .  This is taken into account 
by substituting T = T~ into Na and 7 .  However,  in addition to this,  as T r i se s  the solubility of the gas 
will diminish, and the excess  of gas will pass into the space above the liquid to the relat ive extent 0 < ~ < 1 
being trapped in the indentations to the extent 1 --  ~o, so increasing the number and volume of the gas 
bubbles a l ready present  in these .  (An analogous situation a r i ses  on the walls of a bottle containing a lco-  
hol.) This not only eases the boiling of the liquids, but a tso increases  the intensity of heat t r ans fe r  by 50% 
(on account of the growth of the vaporizat ion centers)  when boiling under conditions of f ree  convection [10, 

N * 11]. The increment  to a(Ts ) associa ted with the reduct ion in the solubility of the gas (on the assumpt ion 

that Pg = constant) is 

Nln d F (To) F iT (x, t0) ] ' 
0 

T (x, to) = r o -- 0 (x, to). (4) 

Here Nind is the number of indentations per unit a rea  of the rough solid surface,  6 is the thickness of the 
layer  of liquid, while | t) is given by (8). In addition to this,  over the period t o required for heating 
the boundary layer  of liquid f rom T o to T~ , a cer ta in  number  molecules  ANb will pass  into the micronucleus  
through its interface with the liquid as a resul t  of evaporation. This will be established below. 

The tempera tu re  field in the liquid depends on the intensity of the convective cur rents  excited in the 
liquid. For  natural  turbulent convection we may introduce a coefficient of effective thermal  conductivity 

[12]: 

~.* (x, O) = 0.073 ~0 - -  ao j -47- (5) 

if the x axis is directed along the normal  to the lower solid heating wall. The pa ramete r s  in Eq. (5) were 
defined in [12]. Let us suppose that at x = 5 the t empera tu re  of the liquid is held constant and equal to T o 
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(in ~ i . e , ,  we s h a l l  c o n s i d e r  an  u n d e r h e a t e d  l iqu id ,  whi l e  a t  x = 0 a constans t h e r m a l  f lux q0 is  s u p p l i e d  

t o  t he  l a t t e r .  The  s o l u t i o n  of t he  n o n l i n e a r  p r o b l e m  

O_O00t -- cpM oxO (xO,/3 O0 , O(x, t) = T(x, t)-- T O , 

- - z  ~ qo, o(6, t )=o ,  O(x,O)=O (6) 

m a y  be  ob ta ined  if  ~ * (x, G) i s  e x p r e s s e d  in  the  f o r m  (1/2)M6GIs/3 - -  Mx~2 (| w h e r e  Gs = T ~  - -  T o and :2 (| 
i s  a n o n l i n e a r  func t ion .  In o r d e r  to  l i n e a r i z e  t he  equa t ion ,  in  t he  t e r m  Mxf2 (@) we m a y  u s e  t he  funct ion  @ 0 
d e r i v e d  f r o m  a s o l u t i o n  of t he  p r o b l e m  wi th  f~ (@) = 0. App ly ing  a L a p l a c e  t r a n s f o r m a t i o n  with  r e s p e c t  to  

time we find that 

(3 (x, t) : ~ dt I H (xo, x) G (xo; cpq~ .I'dmG (O; x'l--x) ' 
0 0 0 

qo {! 86 C~ (-- l) ,~ 
(30 (x, t) ( 6 -  x) 

L ( 3 rt 2 ~ -  (2n@,l)  ~" 
rt~O 

xexpk 462 t sin 25 ~ , a-- cp 2@ (7) 

Subs t i t u t ing  G 0 in to  ,,2 (G) we a r r i v e  a t  a l i n e a r  equa t ion  wi th  a s o u r c e  H(x, t)  = (M/co)  (0/~x) Ix2 (G 0) @| ]. 
T h e  s o l u t i o n  s u b j e c t  to  the  b o u n d a r y  cond i t ions  in  (6) i s  

t 8 t 

x, i--~) dxo+ (8) 

where G is the Green's function of a mixed boundary problem of the first and second kinds. 

v a l u e s  

G (xo; x, t ) =  l _ l _ _ _  (x ) - -exp 4at 2 ]/'nat ( "  1)n .exp ' . 

For s m a l l  t i m e  

(9) 

H e r e  x*  = x 0 + (2n - -  1)6, whi l e  for  l a r g e  F 0 = (at /62)  

G ( x ~  (2n+l)~n~F~ s i n 4  (2n+l)nx~ sin 

rt=O 

(2n -r- 1)~x 
26 

(lO) 

A n  a n a l o g o u s  s o l u t i o n  m a y  be ob ta ined  fo r  the  p r o b l e m  in  which  the  t h e r m a l  f lux ql i s  s p e c i f i e d  on the  
b o u n d a r y  x = 6, and a l s o  for  tha t  in  which  q0 and clt a r e  s p e c i f i e d  in  the  f o r m  of a r b i t r a r y  func t ions  of t .  
T h e  evo lu t i on  of the  bubb le  a f t e r  s e p a r a t i o n  f r o m  the  wa l l  depends  v e r y  c o n s i d e r a b l y  on the  f o r m  of the  
b o u n d a r y  c o n d i t i o n s .  

F r o m  Eq .  (8) we f ind the  va lue  of t o fo r  which  T 0 + | t 0) = T ~ .  Thus ,  

\ zo ! tnl V--- ~ (kT.) ~ / 2  . ~ .  de, (11) 
0 7. 

w h e r e  a Maxwel l  func t ion  i s  u sed  as  the  e n e r g y  d i s t r i b u t i o n  func t ion  of t he  mofiecules  in  the  l iquid (the n u m -  
b e r  p e r  unit  v o l u m e  be ing  N); T , ( t )  = T  O + O(0, t ) ;  r i s  t h e  r e f l e c t i o n  c oe f f i c i e n t ;  ~0(Pb0) i s  t he  c o n d e n s a -  
t i o n  c o e f f i c i e n t ;  A i s  t he  m o l e c u l a r  hea t  of v a p o r i z a t i o n ;  m I i s  the  m a s s  of the  l iquid  m o l e c u l e .  A f t e r  
c e r t a i n  c a l c u l a t i o n s  we ob ta in  

to 

0 

N * T h u s ,  a t t h e  ins t an t  o f t i m e  t0 in  a n  i n d e n t a t i o n  of dep th  z o w e  f ind No(z0, to) = a ( T s )  + A N a  + A N  b gas  and 
v a p o r  m o l e c u l e s  occupy ing  a height  z 2 = [(3/,~) (zo/r0) 2 (P1VtT s No/LoT t Pb0) ] l /3  on the  a s s u m p t i o n  tha t  | and 
r l  have  not v a r i e d  up to  t he  m o m e n t  t o. S ince  the  dep ths  of t he  i nden ta t i ons  obey a Gauss  d i s t r i b u t i o n  with 
a d i s p e r s i o n  ff~, t he  n u m b e r  of p o t e n t i a l  c e n t e r s  of v a p o r i z a t i o n  a c t i v a t e d  at  t he  ins t an t  t o i s  d e t e r m i n e d  by 
the r e l a t i o n  
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exp [ - -  _-~- ~dz0= Nin ~ - - ~  (13) n-%v~_ k 2~;1 
z 0 

where  #(x) is the probabi l i ty  in tegral ,  while z~* = f(z 2) and z~ = f(zer)  a r e  de te rmined  f r o m  the express ions  
z2 = [Dz0~N0(z0, t0)] I/3 ( forz0= z~*) and zer  = [Dz~T~Ncr(Z0, to)] 113 (for z0=zo).  H e r e D = ( 3 / ~ ) ( P l V l /  
r~LoTiPb0) , while Net is the number  of gas and vapor  molecules  in a nucleus of c r i t i ca l  s ize .  For  t .  > t o 
at which | t . )  = Os + A@, i . e . ,  for  a superheat ing  A| of the liquid, the number  of act ivated v a p o r i z a -  
t ion cen te r s  is obtained by making the subst i tut ions t o -~ t ,  and T* * s ~ Ts  + A~). Since for la rge  T the ro le  
of the d issolved gases  in the fo rmat ion  of complexes  of Na + ANa molecules  is  predominant ,  even sl ight 
superheat ings  of the liquid will lead to  intense vapor iza t ion ,  as may readi ly  be deduced f r o m  Eq. (11). 
This  fact  is of fundamental  impor tance  for  the boiling of liquid meta ls  in nuclear  r e a c t o r s  [4, 10]. 

Let us wr i te  down the s y s t e m  of equations de termining  the subsequent  growth of a gas  - -Vapor  bubble 
within an indentation of the rough su r face .  Owing to the sma l l  d imensions  of the indentation we may a s s u m e  
that  the t e m p e r a t u r e  in the bubble v a r i e s  in accordance  with the law Tb(t) = T ,  (t) for  t > t 0. The re la t ion-  
ship between the p a r a m e t e r s  of s ta te  of the vapor  in the bubble a r e  given in s impl i f ied fo rm by the equation 

Pb(t) R m ( t ) T b ( t )  , V(t)= 1 a ( r ~  z 2 ~ z . < z o + r o ,  (14) 

where  ~l is the fo rm fac tor ;  R is the  speci f ic  gas content.  (This re la t ionship  was es tabl i shed in [13] on 
the bas is  of the r e s u l t s  of [14].) Using the Langmuir  --  Her tz  -- Knudsen formula ,  we may find the change 
in the mass  of vapor  in the bubble:  

dt \ z o / i 2~RT, / 

where  Ps is the sa tu ra ted  vapor  p r e s s u r e  of the liquid; M 0 is the molecu la r  weight of the vapor;  ~ (Pb) is 
the effect ive vapor iza t ion  coefficient  (also cal led the coefficient  of condensat ion [15]). The quantity ~ was 
l is ted in [15] for  a number  of subs tances .  The  boundary l ayer  of liquid and a l so  that  of the vapor  bubbles 
at the instants  of t ime  preceding  the onset of boiling a r e  superhea ted  re la t ive  to T s . Each value of T .  (t) 
co r r e sponds  to its own sa tu ra t ion  p r e s s u r e  Ps .  The Ps (T*) re la t ionship  is given by the Clasius - -  Clapey-  
r o n  formula  [d In P s / d T ,  ] = (L/RT 2 ) or the Kirchhoff --  Rankine - -  Dupr~ equation 

In P~ = u -- In T. PT,  u const. (16) 

Here  L is the latent heat of vapor iza t ion  of 1 g - m o l e  of liquid; &Cp is the d i f ference  between the specif ic  
heats of the vapor  and condensate .  In order  to  c lose  the s y s t e m  of equations we must  es tab l i sh  a re la t ion-  
ship between the vapor  p r e s s u r e  in the bubble Pb, the p r e s s u r e  of the liquid P, and the d imensions  of the 
bubble,  i . e . ,  we must  wr i te  down the analog of the Rayleigh equation for a bubble of conical shape .  Let 
us neglect the fo rces  of su r f aee  f r ic t ion  assoc ia ted  with the motion of the liquid inside the indentation, i . e . ,  
cons ider  tMs motion as  spher ica l ly  s y m m e t r i c a l .  F r o m  the Navier  --  Stokes equation and the equation of 
continuity, by analogy with [16], we find that  

Ou Ou 1 OP_jr_ -)- u ) z 2 ) ~  dz 

Ot + u  --  - -  , = , dr P0 Or k Or 2 r -~r -7- dt 

Integrat ing the equat ion for  u with r e s p e c t  to r between z and 6, making use of the Laplace re la t ionship  [20] 
P(z) = P b -  (2~ /z )+  ( 4 / 3 ) p 0 v [ ( a u / a r ) -  ( u / r ) l l r =  z ,  and assuming  that  P (5 )=  P, we obtain an analog of the 
Bayle igh equation: 

1 
/ 

(zz - -  2z') ( 1 - -  az) - ~ - z ' ( 1 - - a ' z * ) - - - ~  (l  - -  aSz3) = ( 2a 4vpo z )  (i7) 
z P u - P  z z '  

in which c~ = 6-1; z 2 <- z -< z 0 + r0; i, is the k inemat ic  v i scos i ty  of the liquid; P0 is the m a s s  of unit 
vo lume of the liquid; 6 is the th ickness  of the liquid layer .  

By solving the s y s t e m  of equations (6) and (14)-(17) we may find the laws governing the changes in 
m(t), Ps(t),  Pb(t), T . ( t ) ,  z(t) and the value o f t i  for  which z(t l) = z 0 + r  0. The init ial  conditions for  these  
equations take  the f o r m  Pb(t0) = Pb0, m{t0) = m0N0, Tb(t0) = T ,  (to), z(t 0) = z 2, Ps (to) = Ps (Ts)-  

Let us cons ider  the following s tage in the evolution of the bubble f r o m  a hemisphe re  of radius  r 0 
a t tached to the plane of the wall  to a sphe re  with a s epa ra t i on  radius  Rsep .  As be fore ,  the dec is ive  fac tor  

266 



in the development  of the bubble is the superheat ing  of the liquid and the vapor  r e la t ive  to T s , as  a r e su l t  
of which the vapor  p r e s s u r e  in the bubble Pb exceeds  the ex te rna l  p r e s s u r e  of the liquid P. (It follows . 
f r o m  [17] that even at a t e m p e r a t u r e  of 120~ the Ps of the water  vapour  is a lmos t  twice a tmosphe r i c  p r e s -  
su re .  The Ps(Ts)  re la t ionship  is a l so  given in [18].) Let us a s s u m e  that 

pb(t ) 3Rm(OTb( l  ) 1 [ ~_ l 1 6~sin:O~. (18) 4 ~ ' % = T  1+ ~ o s e , ( 2 + s i n ~ e , )  + 7  r 

The quantit ies in the f o r m  factor  ' I ,  2 a r e  l isted in [13J. The re la t ionship  between the  sa tu ra t ion  p r e s s u r e  
and the vapor  t e m p e r a t u r e  follows f r o m  the equation 

lnP~ - u -- In Tb(t ) RTb (t) (19) 

on the assumpt ion  that  Ps f rs )  = Ps f ib) .  The r a t e  of evapora t ion  of the molecules  inside the bubble depends 
on its wall  t e m p e r a t u r e  Tf(t). Since Tf(t) is different  on different  par t s  of the su r face  S(t) = 4~r2(t) of the 
bubble, we have 

; j  Mo ,=0, dt " = q(t)dS, q(t) = ~I(Pb)(P,-- Pb) \ 2~RT I �9 
S(t) 

The t rans ien t  spat ia l ly  inhomngeneous t e m p e r a t u r e  d is t r ibut ion  Tb(r ,  t) in the growing bubble should be de-  
t e r m i n e d  f r o m  the heat-conduct ion equation for an expanding sphe r i ca l  region.  Approximate ly  we have Tb = 
Tb(t) where  Tb(t) is found f r o m  the heat balance assoc ia ted  with the heat t r a n s f e r  ( t ransfer  coefficient k0) 
between the vapor  and the surrounding liquid: 

k o (T s - -  T b ) dS = gr 8 (t) C b dt 
S(t) 

Here Cb is the vo lumet r ic  specif ic  heat of the vapor .  If we use  the g r a v i m e t r i e  specif ic  heat, then on the 
r ight -hand side of (21) we must  introduce the vapor  densi ty  Pb(t) = (3/4)[m(t)/~rr3(t)]- Equation (21) enables  
us to make an automat ic  al lowance for the t e m p e r a t u r e  jumps between the liquid and the vapor [11,19]. 

Neglecting effects  assoc ia ted  with the absence  of spher ica l  s y m m e t r y  during the motion of the liquid 
surrounding the bubble, and a lso  neglecting the effect  of the finite thickness  of the layer  of liquid, i . e . ,  
putting ~ = 0 in (17), we find, i n t h e  s a m e  way as that employed in der iving Eq. (17), that the re la t ionship  
between the change in the radius  of the bubble growing on the wall  and the p r e s s u r e  drop AP = Pb --  P is 
g iven by the equation 

- - -  ' (v, ~) AP-  
t d t  2 2 k - ~ ]  ~ ( P  r ,  = - -  , Pc 

r r, r ) =  4v r 2 r 10 i 
7 - - - - 3 - v  r 3 V--.r (22) 

It is usually considered that in the Rayleigh equation 90(u, r,  ~) = 4v (~/r), i .e. ,  only the difference between 
the pressure and the normal forces in liquids due to viscosity effects is taken into account. It is neverthe- 
less quite clear that in order to take a proper account of viscosity we must also start from the equation of 
motion inthe Navier -- Stokes for m and not the Euler form. This has the effect that ~(~, r,  ~) = (l~ 
r). 

Over the range r 0 -~ iRsep the growth of the bubble is determined by the three-dimensional tempera- 
ture field derived from the equation 

OT 02T {" 02T O2T ", ~.o 
- -  = a  - - - L a  o ~ ] 4 - _  - - H  l ( x ,  t), a 0 =  - - ,  (23 )  

Ot dx 2 8 y  2 ' 02" cp 

H~ (x, t) cpM Oxa [xfl (@o + To) -a2~ J ] 

with the boundary condition at the su r face  of the bubble 

[--).o4ar~ tIT " s ~ ; I ( P . - - P b ) (  M~ )'""-dS+ I ! k o ( T , - - T b ) d S ] =  = = 0 .  (24) 
2aRT1 J = b Or ~ s(o "~slo 

where rb(t) is the radius  of the bubble; Tf = T( r ,  t) I r = rb; X 0 is the t he rma l  conductivity of the liquid. As the 

267 



initial condition for (23) we use the function T 1 = 01 + T o obtained f rom a solution of (23) at the instant t = 
t l ,  i . e . ,  without allowing for the boundary condition on S{t)o The boundary condition at x = 0 is the same 
for  (23) as it is in the case  of (6). As initial  conditions for the remaining unknowns we use thei r  values 
obtained f rom a solution of the previous sys tem of equations at t = t I . 

Equations (18)-(23) allow for the evapora t ion  of the mic ro laye r ,  not only under the bubble, but also 
over  its whole sur face .  In this way the equations s t r ic t ly  and automatical ly incorpora te  the now general ly  
accepted hypothesis of the mic ro l aye r  (see bibliography to [21]) which rece ived  exper imenta l  conf i rmat ion 
in [22]. Other  approaches and growth models for  vapor bubbles on solid walls appear  in [13, 20, 23, 24]. 
For  volumetr ic  boiling the same question was t r ea ted  in [19]. 
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